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ABSTRACT: The High Resolution Ensemble Forecast v2.1 (HREFv2.1), an operational convection-allowing model

(CAM) ensemble, is an ‘‘ensemble of opportunity’’ wherein forecasts from several independently designed deterministic

CAMs are aggregated and postprocessed together. Multiple dimensions of diversity in the HREFv2.1 ensemble mem-

bership contribute to ensemble spread, including model core, physics parameterization schemes, initial conditions (ICs),

and time lagging. In this study, HREFv2.1 forecasts are compared against the High Resolution Rapid Refresh Ensemble

(HRRRE) and the Multiscale data Assimilation and Predictability (MAP) ensemble, two experimental CAM ensembles

that ran during the 5-week Spring Forecasting Experiment (SFE) in spring 2018. The HRRRE and MAP are formally

designed ensembles with spread achieved primarily through perturbed ICs. Verification in this study focuses on composite

radar reflectivity and updraft helicity to assess ensemble performance in forecasting convective storms. The HREFv2.1

shows the highest overall skill for these forecasts,matching subjective real-time impressions fromSFEparticipants. Analysis

of the skill and variance of ensemble member forecasts suggests that the HREFv2.1 exhibits greater spread and more

effectively samples model uncertainty than the HRRRE or MAP. These results imply that to optimize skill in forecasting

convective storms at 1–2-day lead times, future CAM ensembles should employ either diverse membership designs or

sophisticated perturbation schemes capable of representing model uncertainty with comparable efficacy.

KEYWORDS: Convection; Ensembles; Forecast verification/skill; Numerical weather prediction/forecasting; Short-

range prediction

1. Introduction
During the most recent decade, convection-allowing models

(CAMs) have become a staple in the operational forecasting

toolbox, particularly for applications that benefit most from

their combination of high spatial resolution and explicit con-

vective structures. While deterministic CAMs have been run-

ning operationally since around 2010, the implementation of

their ensemble prediction system (EPS) counterparts has lag-

ged behind owing to a higher computational cost. Nonetheless,

experimental CAM EPSs were produced by the University of

Oklahoma (OU) Center for Analysis and Prediction of Storms

(CAPS) in real time as early as the mid-2000s (e.g., Xue et al.

2007; Kong et al. 2007; Levit et al. 2008) for evaluation in the

NOAA Hazardous Weather Testbed (HWT) Spring

Forecasting Experiment (SFE; Kain et al. 2003; Clark et al.

2012; Gallo et al. 2017). Through subsequent years, additional

CAMEPSs have been run on an experimental basis during the

SFE by the National Center for Atmospheric Research

(NCAR; Schwartz et al. 2015), NOAA’s Global Systems

Laboratory (GSL) (Dowell et al. 2016, hereafter D16), the OU

Multiscale data Assimilation and Predictability (MAP) group

(Johnson et al. 2015; Wang and Wang 2017; Wang et al. 2018;

Johnson et al. 2020), and others.

By 2016, the number of EPSs contributed to the annual SFE

had grown large enough to justify instantiating the Community

Leveraged Unified Ensemble (CLUE; Clark et al. 2018), a

framework for scientific collaborators to set common standards

for key aspects of their systems such as the model grid and data

output format. The CLUE, in turn, has paved the way for more

systematic, controlled comparisons of its various subsets (e.g.,

Potvin et al. 2019). The different CLUE subsets are distin-

guished from one another not only by their basic model con-

figuration (e.g., dynamical core), but also by their membership

design approach. Most of the subsets (e.g., the NCAR, MAP,

and GSL systems) use a single, unified1 model configuration

with ensemble spread achieved through initial condition (IC)

and lateral boundary condition (LBC) perturbations. However,

some subsets (e.g., the CAPS core ensemble; Clark et al. 2018)

use multiphysics configurations wherein the microphysics,

planetary boundary layer (PBL), and/or land surface model

(LSM) parameterization schemes also differ. Separate from

the CLUE, an especially diverse class of CAM ensembles,

Corresponding author: Brett Roberts, brett.roberts@noaa.gov

1 In this paper, we use ‘‘unified’’ to describe an ensemble whose

members all share the same dynamical core and model configura-

tion; specified differences between members are limited to applied

perturbations (e.g., to the initial and lateral boundary conditions of

model state variables, or to variables internal to physics parame-

terization schemes).
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‘‘ensembles of opportunity’’ (EOs), have also been evaluated

in SFEs since 2011. The term EO herein is the same as the

‘‘poor man’s ensemble’’ (e.g., Ebert 2001; Arribas et al. 2005;

Casanova and Ahrens 2009), which can be characterized as

several independently designed, deterministic numerical weather

prediction (NWP) models combined and postprocessed as

an ensemble. Such ad hoc systems typically violate the ideal

EPS property of equally likely member solutions (Leith 1974;

Ziehmann 2000) and require extra postprocessing tech-

niques for maximum utility (e.g., interpolation to a common

grid, separate bias correction of each member, etc.). In the

context of CAMs, this ensemble design strategy originated

from the Storm Prediction Center (SPC) with the Storm-

Scale Ensemble of Opportunity (SSEO; Jirak et al. 2012).

The SSEO comprised seven deterministic CAMs from sev-

eral modeling centers that used substantially different

model configurations, and of which only some were even

operationally supported. The SSEO was evaluated yearly in

the SFE until it was supplanted by the High Resolution

Ensemble Forecast system, version 2 (HREFv2; Roberts

et al. 2019, hereafter R19), NOAA’s first operational CAM

ensemble, in late 2017. HREFv2 may be regarded as the

formalization of SSEO’s design philosophy, as its eight

members’ configurations closely mimic several of SSEO’s

members; albeit with finer, more uniform horizontal grid

spacing ofO(3) km, and a closely synchronized run schedule

that is operationally supported. A commonality of SSEO and

HREFv2 is the inclusion of time-lagged members, which adds

yet another element of membership diversity alongside

member-to-member differences in dynamical core, phys-

ics, and ICs/LBCs.

Although the relatively high spatial resolution of CAM

systems benefits NWP skill for a wide array of atmospheric

phenomena, CAM development has been motivated in par-

ticular by the opportunity to predict convective storms with

realistic structures and impacts on their surrounding environ-

ment. For example, CAM forecasts of convective mode, cov-

erage, and severe weather hazards have been the primary

focus of subjective and objective evaluations conducted in

the HWT SFE, which in turn have guided CAMdevelopment

pathways (e.g., D16; R19; Gallo et al. 2019). In the course of

these evaluations, a consistent theme has emerged of EOs

receiving among the highest scores in subjective participant

ratings and limited objective verification metrics, when

compared against other CAM EPSs lacking such configura-

tion diversity (e.g., Jirak et al. 2015, 2016). Although the

SSEO was largely born of necessity at a time when no for-

mally designed CAM EPSs were available operationally, its

consistent success in SFE evaluations motivated the decision

to use a similar membership design for the operational

HREFv2.

While SFE evaluations have highlighted the relative success

of convective storm forecasts from CAM EOs, the reasons for

this success have not yet been investigated rigorously. For

coarser-grid EPSs, it has been demonstrated that accounting

for model uncertainty separately from IC uncertainty can gen-

erate larger spread and superior forecasts for traditional syn-

optic fields (Du et al. 1997; Stensrud et al. 2000). Other studies

have suggested that employing multiple models (Ziehmann

2000; Eckel and Mass 2005; Johnson and Swinbank 2009) or

physics schemes (Jankov et al. 2005; Hacker et al. 2011) may be

particularly effective ways of capturing this uncertainty. More

recently, the value of representing model uncertainty within a

CAM ensemble using variations in model core (Clark et al.

2008; Johnson et al. 2011; Clark 2019), PBL parameterizations

(Schwartz et al. 2010; Johnson et al. 2011; Loken et al. 2019),

microphysics parameterizations (Clark et al. 2008; Schwartz

et al. 2010; Duda et al. 2014; Loken et al. 2019), LSM param-

eterizations (Duda et al. 2017), and time-lagging (Mittermaier

2007) has been shown in the context of forecasting synoptic

and precipitation fields to improve ensemble skill, typi-

cally through increasing spread in underdispersive sys-

tems. Gasperoni et al. (2020) conducted experiments to

compare different methods of sampling model uncertainty

in the context of mutliscale ICs generated by the Gridpoint

Staistical Interpolation (GSI; Wu et al. 2002; Shao et al.

2016) ensemble–variational (EnVar) system (e.g., Wang

2010; Wang et al. 2013; Wang and Wang 2017). They found

that both their multimodel and multiphysics configura-

tions were superior to their single-model single-physics

configuration. It was also found that a multimodel design

tends to perform best at early lead times, whereas multi-

physics with stochastic physics tends to be best for later

lead times.

With these findings considered, there is some a priori reason

to suspect that CAM EOs—which at least attempt to repre-

sent uncertainty across several of these relevant dimensions

simultaneously—may demonstrate better spread characteristics

and more meaningful probability density functions (PDFs)

than their fully unified EPS counterparts, which generally only

represent IC/LBC uncertainty. Although this is an area where

EOs offer a clear benefit over unified EPSs, the latter have

their own advantages: they enable simpler, more efficient

technical implementations and modularity, which in turn fos-

ters collaborative development across the NWP community.

Furthermore, a unified EPS with IC perturbations prescribed

around one analysis typically only requires a single data as-

similation (DA) system, yielding another important efficiency

advantage with respect to intellectual investment, computa-

tional resources, and maintenance overhead. The desire to

fuse the benefits of both ensemble types has spurred recent

attempts to develop stochastically perturbed parameteriza-

tions (e.g., Jankov et al. 2019; Hirt et al. 2019; Wastl et al.

2019), which could obviate the need for diverse configuration

choices within an EPS’s membership to sample physics un-

certainty. In the present study, we aim to quantify differences

between EOs (represented using the HREF) and unified,

formally designed CAM EPSs (represented using two CLUE

subsets) with respect to their skill and spread in forecasts of

convective storms.

The paper is organized as follows. Section 2 describes da-

tasets and analysis methods. Sections 3 and 4 present analyses

of composite reflectivity and surrogate severe forecasts, re-

spectively. Section 5 summarizes our findings, draws relevant

conclusions, and offers directions for future research on

related topics.
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2. Methodology

a. Datasets

1) NWP FORECAST DATASETS

In this study, we verify and compare CAM ensemble fore-

casts from the 2018 HWT Spring Forecasting Experiment

(hereafter SFE2018), which ran weekdays from 30 April to

1 June. All CAM ensemble forecasts examined herein were

initialized at 0000 UTC and forecast lead times of 12–36 h are

verified.Owing to occasionalmissingNWP and/or observational

data, our final verification dataset covers 21 of the 24 days

SFE2018 operated: 30 April, 1–4May, 7–8May, 10–11May, 14–

18 May, 21 May, 24–25 May, 29–31 May, and 1 June.

The HREFv2 is an eight-member multimodel, multiphysics,

multi-IC CAM EO with time lagging. Several independently

developed deterministic CAMs compose the HREFv2 mem-

bership. Herein, we verify the HREFv2.1, an HREF variant

with two additional members (for 10 members total): the

HRRR and HRRR 26 h. The HREFv2.1 has been processed

in real-time at the NOAA Storm Prediction Center since April

2019, and showedmodestly improved skill over theHREFv2 in

forecasting convective storms from subjective and limited ob-

jective verification during SFE2018 (Gallo et al. 2018). Further

membership configuration details are given in Table 1, while a

diagram of the time-lagging approach is displayed in Fig. 1. The

HREFv2.1 is available as a 10-member ensemble out to a lead

time of 30 h, and as a 9-member ensemble out to 36 h (with the

HRRR 26 h member dropping out after 30 h). Because the

native model grids differ between some members, all data are

interpolated to a common 3-km grid using a nearest-neighbor

approach before ensemble postprocessing. It is important to

note that the HREFv2.1 verified herein uses a different

membership2 than the HREFv2 produced at NCEP and dis-

tributed via public channels, so our results will not necessarily

apply to that configuration in a strict sense.

Two3 CLUE subsets are compared to the HREFv2.1: the

High Resolution Rapid Refresh Ensemble (HRRRE; D16),

and the MAP Ensemble (Johnson et al. 2015; Wang andWang

2017; Wang et al. 2018; Johnson et al. 2020). Both the HRRRE

andMAPare unified, formally designedCAMEPSs. Furthermore,

as both systemswere designedwithin the CLUE framework for

SFE2018, they largely shared model configuration details: the

Advanced Research version of the Weather Research and

Forecasting (WRF) Model (WRF-ARW; Skamarock et al.

2008) dynamical core was employed at 3-km horizontal grid

spacing using the Mellor–Yamada–Nakanishi–Niino (MYNN;

Nakanishi and Niino 2004) PBL and Thompson aerosol-aware

(Thompson and Eidhammer 2014) microphysics parameteri-

zations. The HRRRE comprised a 36-member ensemble DA

system that was initialized at 0300 UTC daily from a Global

Forecast System (GFS) background with GDAS perturba-

tions; these members were then cycled hourly via an ensemble

Kalman filter (EnKF) using conventional and radar data,

until at 0000 UTC nine of the members launched 36-h fore-

casts. The preceding 1800 UTC GFS provided mean LBCs

upon which random perturbations were added to ensemble

members. Also, in the HRRRE, perturbations were intro-

duced to the soil moisture field during the first minute of

each day’s DA cycling (0300–0301 UTC), representing ef-

fectively another type of IC perturbation. The MAP used a

41-member DA ensemble that ran for 6 h (1800–0000 UTC

daily) prior to the initialization of its 10 forecast members at

0000 UTC. Its DA was an EnKF–3DEnVar hybrid system

based on GSI that assimilated both conventional (hourly

from 1800 to 0000 UTC) and radar (every 20min from 2300

to 0000 UTC) observations. Different from HRRRE, the

ensemble LBCs for MAP during DA and ensemble forecasts

were provided by members of NCEP’s Global Ensemble

Forecast System (GEFS) and Short Range Ensemble Forecast

(SREF). In theMAP forecast system, unlike theHRRRE, there

is a control member (designated MAP 01 hereafter) taking its

ICs from an EnVar analysis, whereas the other nine members

contain specified IC perturbations from cycled and recentered

GSI EnKF; a consequence is that smaller forecast error may be

expected from the control member when aggregated over many

cases (Johnson et al. 2020). During DA cycling, MAP pertur-

bations were recentered around the control member prior to

each cycle, while recentering was not performed during the

HRRRE’s DA. More complete details of the HRRRE are

available in D16, and of theMAP in Johnson et al. (2015),Wang

andWang (2017), Wang et al. (2018), and Johnson et al. (2020).

In summary, theHRRREandMAPhave nearly identical model

configurations, but their respective approaches to DA and

IC/LBC perturbation strategies differ significantly; the HRRRE

also includes perturbations to soil moisture ICs, while MAP

does not.

In this study, we verify two forecast fields: instantaneous

composite radar reflectivity (CREF) and hourly maximum

2–5 km above ground level updraft helicity (UH; Kain et al.

2008). UH is used to construct surrogate severe probabilistic

forecasts (Sobash et al. 2011, 2016b), which are smoothed

neighborhoodmaximum ensemble probability (NMEP; Schwartz

and Sobash 2017) fields based on UH exceedence thresholds

[more information is given in section 2b(1)]. For CREF, similar

NMEPs are calculated to assess convective coverage, timing,

and location. Thus, the bias-corrected CREF field is thresh-

olded at 40 dBZ, above which values are typically associated

with deep moist convection. Verification of UH supplements

this by focusing more narrowly on rotating convective updrafts,

which are responsible for a disproportionate share of severe

weather hazards (e.g., Duda and Gallus 2010).

2 Specific differences between SPC’s HREFv2.1 and NCEP’s

HREFv2 are as follows: 1) HREFv2.1 adds two new HRRR mem-

bers, increasing the member count from 8 to 10; 2) HREFv2.1 uses a

12-h time lagNAMNestmember, whereHREFv2 uses a 6-h time lag

member; and 3)HREFv2 officially assigns decreasedweight to lagged

members (and increased weights to nonlagged members) in com-

puting ensemble mean fields. See Table 1 for additional information.
3 Additional CLUE subsets, including the aforementionedNCAR

ensemble, were also available in SFE2018; the MAP and HRRRE

are selected for analysis herein because they received the best

subjective ratings from SFE participants among the unified en-

sembles participating in the CLUE.
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For instantaneous CREF, NMEPs are evaluated hourly for

lead times of 13–30 h,4 corresponding to the period from

1300 UTC on the initialization date to 0600 UTC on the fol-

lowing date. Surrogate severe forecasts are generated and

evaluated for the time-maximum UH values over the convec-

tive day, which we define as the 24-h period beginning at

1200 UTC on the initialization date. For any given date, one

surrogate severe field covers the entire convective day; this

field represents the expected coverage of rotating storms

throughout the whole diurnal cycle. Therefore, our CREF

verification is much more sensitive to timing errors than our

surrogate severe verification. Together, the CREF and UH

verification should capture most of what an outlook forecaster

at the SPC would be responsible for anticipating.5

Verification of CREF forecasts is performed over the

CONUS, as well as the SFE daily domains. The daily domain

for each date is a rectangular area of 158 longitude by 8.728
latitude manually selected to cover a relevant convective

forecast challenge (typically, though not always, near the

highest SPC convective outlook risk category). Surrogate se-

vere forecasts are always verified over a domain that covers the

eastern two-thirds of the CONUS.

2) OBSERVATION DATASETS FOR VERIFICATION

To verify surrogate severe forecasts, we utilize preliminary

local storm reports (LSRs) from the National Weather Service

(NWS). Reports of tornadoes, severe hail (exceeding an inch

in diameter), and damaging wind gusts (exceeding 58 mph,

if measured) are considered. LSRs are mapped onto an

80-km grid that is everywhere zero, except grid cells con-

taining one or more LSRs are assigned a value of 1. This

procedure may be interpreted as a neighborhood search

that is implicit in the regridding. This field is identical to the

OSR81 field used for surrogate severe verification in Sobash

et al. (2011, hereafter S11). A single verification field is gen-

erated for each convective day using all LSRs that occurred

between 1200 UTC on the verification date and 1200 UTC on

the following date.

To verify CREF forecasts, the Merged Reflectivity Quality-

Controlled Composite (MRQCC) product from the Multi-

Radar Multi-Sensor (MRMS; Smith et al. 2016) system is

employed. MRQCC is derived by blending data from over 140

operational WSR-88D radars across the United States and

over 30 additional radars in Canada. Our largest verification

domain for CREF is the continental United States (CONUS),

which is covered by the MRMS mosaic. When verifying a

model CREF probability field, the corresponding MRMS field

is first regridded onto the 3-kmmodel grid. Then, a binary field

is computed that is everywhere 0, except it is set to 1 throughout

an 80 km 3 80 km neighborhood surrounding each point

with MRMS reflectivity exceeding 40 dBZ. Conceptually,

we are producing the same type of binary verification field

for CREF forecasts as for surrogate severe, except the CREF

verification field is defined on the 3-km model grid (instead of

an 80-km grid).

b. Verification methods

1) COMPUTATION OF BINARY AND PROBABILISTIC

FIELDS

As described above, both the forecasts and observations

are thresholded and transformed into binary (and also, in

TABLE 1. Membership configuration of the HREFv2.1. HRW and NAM refer to High Resolution Window and North American

Mesoscale Forecast System runs, respectively. Dynamical cores used include the Advanced Research and Forecasting version of the

Weather Research and ForecastingModel (WRF-ARW; Skamarock et al. 2008) and the Nonhydrostatic Multiscale Model on the BGrid

(NMMB; Janjić and Gall 2012). PBL schemes used include the Mellor–Yamada–Nakanishi–Niino (MYNN; Nakanishi and Niino 2004),

Yonsei University (YSU; Hong and Lim 2006), and Mellor–Yamada–Janjić (MYJ; Janjić 1994) formulations. Microphysics schemes

include the Thompson (Thompson et al. 2008), WRF single-moment 6-class (WSM6; Hong et al. 2006), Ferrier (Ferrier et al. 2011), and

Ferrier–Aligo (Aligo et al. 2018) formulations. IC backgrounds and LBCs are given as the parent NWPmodel whose analysis or forecast

state is used; ‘‘21 h’’ here indicates that the parent run initialized an hour earlier than the CAM run produces the ICs/LBCs. The HRRR

and NAMNest perform cycled DA using the specified parent model as a first-guess background (Gustafsson et al. 2018), while the HRW

members simply interpolate the specified parent’s ICs.

Member Core PBL Microphysics Time lagging IC background LBCs dx (km) In NCEPHREFv2?

HRRR WRF-ARW MYNN Thompson No RAP 21 h RAP 21 h 3.0 No

HRRR 26 h WRF-ARW MYNN Thompson 6-h RAP 21 h RAP 21 h 3.0 No

HRW ARW WRF-ARW YSU WSM6 No RAP GFS 26 h 3.2 Yes

HRW ARW 212 h WRF-ARW YSU WSM6 12-h RAP GFS 26 h 3.2 Yes

HRW NMMB NMMB MYJ Ferrier No RAP GFS 26 h 3.2 Yes

HRWNMMB212 h NMMB MYJ Ferrier 12-h RAP GFS 26 h 3.2 Yes

HRW NSSL WRF-ARW MYJ WSM6 No NAM NAM26 h 3.2 Yes

HRW NSSL 212 h WRF-ARW MYJ WSM6 12-h NAM NAM26 h 3.2 Yes

NAM Nest NMMB MYJ Ferrier–Aligo No NAM Nest NAM 3.0 Yes

NAM Nest 212 h NMMB MYJ Ferrier–Aligo 12-h NAM Nest NAM 3.0 No (26 h)

4 The most restrictive member of HREFv2.1 (HRRR 26 h;

Fig. 1) is only available out to a 30-h lead time, and we only wish to

verify hourly CREF forecasts with all 10 members available.
5 Identifying convective mode (e.g., linear versus multicellular

versus supercellular) is also critically important for these types of

forecasts. While no mature, practical methods exist for objective

verification of mode, our surrogate severe verification should gen-

erally reward correct forecasts of rotating storms (or lack thereof).
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some cases, smoothed probabilistic) fields before verification

proceeds, a process illustrated in Fig. 2. In all cases, the

neighborhood of grid points is searched for its maximum

value; the remaining distribution of values in the neighbor-

hood does not impact verification. The neighborhood maxi-

mum operation addresses the question of whether any storm

or instance of severe weather exists nearby, which closely

mimics the forecast problem for SPC convective outlook

forecasters, who issue probabilities for severe weather oc-

currence within 40 km of a point. For observations (LSRs

or MRMS), the resulting thresholded binary field (Fig. 2b) is

used directly for verification. For forecasts (CREF orUH), an

additional smoothing step is applied using a two-dimensional

Gaussian kernel as in Eq. (1) of Hitchens et al. (2013). The

resulting smoothed field (Fig. 2c) contains a continuous dis-

tribution of fractional values, which may be interpreted as

probabilities of threshold exceedance in the neighborhood

(as in S11). In the case of surrogate severe forecasts, nu-

merous iterations of the field are computed using a range of

s values from 40 to 300 km. Thus, our surrogate severe veri-

fication allows us to assess how forecast skill varies with the

smoothing length scale. In the case of CREF, this approach is

computationally prohibitive owing to the much finer 3-km

verification grid, so we only produce NMEPs with s5 40 km;

this value is commonly used for operational SPC CAM

guidance (e.g., R19).

Verification of individual ensemble member forecasts in-

volves comparing their smoothed probability field against the

corresponding binary verification field. For verifying an en-

semble system, we represent its forecast as the ensemble mean

of smoothed member probability fields, which is equivalent to

the smoothedNMEP field (e.g., R19). For the remainder of this

paper, NMEP always refers to the smoothed version, as un-

smoothed NMEPs are not verified herein.

When verifying threshold exceedance probabilities for an EO

such as the HREF, separate bias correction of each member is

desirable in order to retain only ‘‘good spread’’—ensemble

variance that improves forecast skill metrics and owes to di-

verse model attractors and/or plausible IC uncertainty, rather

than disparate member biases that widen the PDF only

through systematically offsetting errors—from the diverse

configuration choices (Eckel andMass 2005). Furthermore, in

the case of UH, there is no truth field available whose mag-

nitude is directly comparable to the forecast quantity (which

itself can vary widely with model grid spacing and other

configuration choices). To address these challenges, we

compute climatologies for each member of each ensemble

over the entire verification dataset for both CREF and UH.

These climatologies allow us to map member CREF and UH

values into climatological percentile space, where they can

then be treated equitably across members (and even across

different ensembles). This is fundamentally similar to the

‘‘quantile mapping’’ approach (e.g., Hopson and Webster

2010; Voisin et al. 2010), with the distinction that both our

observed and forecast cumulative distribution functions are

formed from the set of all grid points across the domain and

over all 21 days we are verifying. Before computing the UH

climatology, 3-km model values are first remapped to the

80-km surrogate severe grid such that each 80-km grid cell is

assigned the maximum value among all 3-km grid cells inside

it (this regridding is implicitly a neighborhood-maximum

operation). For CREF, the 3-km model gridpoint values are

used for the climatology. When computing thresholded

forecast fields, all thresholds are based on percentiles from

the climatology. In the case of CREF, for each ensemble

member, whichever percentile matches the 40-dBZ threshold

in the MRMS dataset is used as the forecast threshold. More

details are given in appendix.

FIG. 1. Deterministic CAMmembership in a hypothetical 0000 UTC run of the HREFv2.1.

On each bar, the HREF member name is given in bold blue text, while the member’s de-

terministic run name is given in italicized black. The dashed blue box contains the forecast

times from each member that participates in the 36-h EO forecast. Each deterministic

member runs out to a lead time of at least 48 h, except for the HRRR, whose forecast ends

at 36 h.
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2) SKILL SCORES AND METRICS

Standard metrics for probabilistic forecast verification

are employed herein. The first is the relative operating

characteristic (ROC; Mason 1982) area under the curve

(AUC). For computing the AUC, trapezoidal integration is

employed within theModel Evaluation Tools (MET; Fowler

et al. 2017) 7.0 software suite. AUC measures the ability to

discriminate between events and nonevents; it is condi-

tioned on the observations (i.e., whether or not the event oc-

curred) and is insensitive to forecast bias. AUC ranges from 0

to 1: a value of 1 is a perfect forecast, while 0.5 indicates no

skill, and 0.7 is sometimes used as the minimum score for a

useful forecast.

The fractions skill score (FSS; Roberts and Lean 2008, here-

after R08) is computed for both the surrogate severe forecasts

and CREF probabilities. However, a notable departure from

the R08 definition is that at each grid point, the fractional

probability value from our forecast (either a smoothed mem-

ber probability field or ensemble NMEP) is substituted for the

true neighborhood fractional coverage; this is similar to the

approach of Schwartz et al. (2010). Our formulation of FSS is as

follows:

FSS5 12
�
N

i51

(P
F(i)

2B
O(i)

)
2

�
N

i51

(P2
F(i) 1B2

O(i))

, (1)

where PF(i) and BO(i) are the forecast probability and observed

binary value, respectively, at the ith grid point. Note that we

use the observed binary field, rather than a smoothed (e.g.,

practically perfect; Schwartz et al. 2010) field, as truth. This

avoids potential penalization of spatially precise forecasts

due to ad hoc smoothing of observations whose location is

actually known with certainty (an issue discussed at length in

section 4). Our version of FSS is closely related to the Brier

skill score (Brier 1950); the two are differentiated chiefly by the

reference forecast for FSS considering both the truth and

forecast fields. Specifically, the reference forecast represents

one in which the mean squared values of both the forecast and

truth fields are held constant, but they are redistributed in

space to be maximally nonoverlapping; in other words, the

worst possible forecast that could be made while retaining the

existing distribution of fractional values in the probability

forecasts and observed binary fields. FSS ranges from 0 to 1: a

value of 1 is a perfect forecast, and 0 is the worst possible

forecast containing the same distribution of forecast and ob-

served fractions. Although 0.5 has been suggested as the lower

limit for a useful forecast in the literature, we caution that this

does not apply to our formulation of FSS, given: 1) the

neighborhood-maximum operation in our verification, which

departs from the neighborhood-coverage-based definition in

R08; and 2) our use of a binary truth field. Because of (2), we

FIG. 2. Example of computing thresholded probability fields

from a CREF field. (a) The observed or forecast CREF. (b) A

binary field whose value at each point is 1 if the threshold is ex-

ceeded in the local neighborhood, and 0 otherwise. (c) The result of

applying aGaussian smoother to (b), which gives a continuous field

 
with values in the range [0, 1]; these values can be interpreted as

probabilities. For ensembles, NMEPs are equivalent to the en-

semble mean of the member probability fields.
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expect substantially lower FSS scores6 than in studies that use a

fractional truth field, so our FSS scores should not be compared

directly with such values. For CREF FSSs averaged over all

cases in the verification dataset, we compute 90% confidence

intervals (CIs) for each ensemble mean and member forecast

using the bootstrapping technique described in Wilks (2011)

with 10 000 resamples.

To evaluate the reliability of our CREF probability fore-

casts, we create attributes diagrams (Hsu and Murphy 1986).

Additionally, we compute the so-called reliability component

of the Brier score as follows:

BS
REL

5
1

n
�
I

i51

N
i
(f

i
2 x

i
)
2
, (2)

where I is the number of probability bins; n is the total number

of grid points in the dataset;Ni is the number of grid points with

probabilities in bin i; fi is the forecast probability value asso-

ciated with bin i (e.g., fi 5 0.2 for the bin 0.15, P, 0.25); and

xi is the base rate of the observed binary field in bin i (i.e., the

frequency of event occurrence when probabilities in that bin

were forecast). BSREL is 0 for a perfectly reliable forecast and

increases as reliability (weighted by bin forecast frequency)

becomes worse. In the same manner as described for CREF

FSSs, we compute 90% CIs for BSREL and for the base rate

within each bin.

In addition to verifying NWP forecast skill, we also apply

spread–skill metrics traditionally used for continuous vari-

ables (e.g., temperature) to our CREF probability forecasts.

Specifically, we compute the mean squared error (MSE) and

mean ensemble variance (MEV) for each of the 378 hourly

CREF snapshots. In this context, ‘‘mean’’ refers to the spatial

average over the verification grid (e.g., the mean statistic

for all grid points in the CONUS at a particular verification

time); ‘‘error’’ refers to the difference between the en-

semble NMEP value and practically perfect7 value at a grid

point; ‘‘variance’’ is computed for the set of all member

probability values at the grid point; and terms similar to

Bessel’s correction are included when calculating MSE and

MEV, following appendix B of Eckel and Mass (2005).

Through the neighborhood-maximum operation we are

transforming a field of discontinuous, sparse features

(storms with CREF . 40 dBZ) into a more continuous field

(viz., the probability that a storm exists in the general area).

After this transformation, we then examine MSE and MEV

under the implicit assumption that the traditional spread–

skill relationship can be expected to hold; this assumption may be

explored more rigorously in future work to elucidate precisely

what the MSE–MEV relationship signifies under different

conditions for NMEPs. We also compute the consistency ratio

(CR), defined as the ratio of the MEV to MSE for the aggre-

gate of all forecast cases in our dataset: a system with perfect

statistical consistency has a CR of 1, while CR less than 1 in-

dicates aggregate ensemble underdispersion, and greater than

1 indicates overdispersion.

3. Verification of composite reflectivity forecasts

a. Forecast skill
Figure 3a presents FSSs for CREF forecasts aggregated over

all 378 snapshots for the CONUS domain. For each of the three

ensembles (bottom), the mean FSS of its member probability

fields is displayed as a color-coded bar outlined in black, while

the FSS of the ensemble NMEPs is displayed as a red bar. The

difference between the member mean (color-coded) and

NMEP (red extension) FSS, which we will call FSSgained (i.e.,

the skill gained by the ensemble relative to its constituent

member solutions), is annotated to the right of the bars. In

some sense, FSSgained should indicate how effectively an en-

semble is utilizing its members to fill out a realistic forecast

PDF. Unsurprisingly, there is more variability in skill among

the probability fields of HREFv2.1 members than HRRRE or

MAP members, confirming that equal likelihood of member

solutions cannot reasonably be expected for this type of EO.

For the ensemble NMEPs, HREFv2.1 performs best (0.49;

90% CI nonoverlapping with the other two ensembles), while

HRRRE (0.42) and MAP (0.45) lag behind. However, it is

striking how much smaller the gap in skill is between the three

systems with respect to the mean of their member forecasts:

indeed, HREFv2.1 ensemble NMEPs show roughly double the

FSSgained (10.07), compared to HRRRE (10.04) or MAP

(10.03). When focusing on the SFE daily domains (Fig. 3b),

performance differences between systems and members are

broadly similar to those over the CONUS. One difference

over the daily domains is that MAP members are actually

more skillful overall than HREFv2.1 members, resulting in

statistically similar NMEP FSSs for those two systems.

Nonetheless, HREFv2.1 again exhibits substantially larger

FSSgained. Within MAP, MAP 01 shows consistently better

skill than other members, suggesting the analysis produced

by the EnVar control is more skillful than the recentered

EnKF analyses.

Figures 4a and 4b show ROC AUC values for the CONUS

and SFE daily domains, respectively. The relative differences

between members and ensembles are once again similar: MAP

members outperform HREFv2.1 and HRRRE members over

the SFE daily domains (with comparable skill over the CONUS),

but the ensemble NMEPs are most skillful from HREFv2.1.

AUCgained is larger for HREFv2.1 than for HRRRE or MAP

by nearly a factor of 2.

In summary, the skill scores for CREF probability fields

have the following properties:

1) CAM skill is modestly better when computed over the

entire CONUS thanwhen limited to the SFE daily domains;

6 Testing multiple formulations of the neighborhood-maximum-

based FSS for the same set of cases revealed that an FSS of ;0.65

using a smoothed truth field is equivalent to an FSS of;0.4 using a

binary truth field. This is valid for an 80 km3 80 km neighborhood

and a smoothed field with s 5 40 km.
7 Strictly for this spread–skill analysis, we apply a Gaussian

smoother to the observed binary field (using the same s5 40 km as

the forecast fields), yielding a ‘‘practically perfect’’ truth field. This

is necessary in order to ensure MSE and MEV are directly com-

parable in magnitude.
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this is presumably due to the abundance of ‘‘easy nulls’’

over the CONUS.

2) Individual member skill, in the aggregate, is best for MAP

members, followed closely by HREFv2.1 members, and

then HRRRE members.

3) Ensemble skill, in the aggregate, is best for HREFv2.1,

followed by MAP, and then HRRRE.

4) The skill added by the ensemble NMEPs over their con-

stituent member probability fields is substantially larger for

HREFv2.1 than forMAPorHRRRE, suggestingHREFv2.1

contains more useful ensemble spread with respect to

convective storm coverage and placement.

5) The variation in skill among individual HREFv2.1 mem-

bers is larger than that among MAP or HRRRE members.

b. Forecast spread
To evaluate how each member is contributing spread to its

parent ensemble, the coefficient of determination (r2; the

square of the Pearson correlation coefficient) is computed for

the CREF probability forecasts of every possible pair of

members within each system. For an N-member ensemble,

there are N(N 2 1)/2 such pairs. Correlation matrices for the

CONUS domain are presented in Figs. 5a–c. In terms of the

mean r2 among all member pairs, HREFv2.1 is least correlated,

followed by HRRRE, and thenMAP. For HRRRE andMAP,

the strength of correlation between one pair of members is

quite similar to any other possible pair; an exception is that

MAP 01 (the MAP control member) is more similar to its

siblingmembers than they are to one another, as expected for a

control member. For HREFv2.1, however, substantial differ-

ences in r2 values exist among member pairs. The most similar

pair, HRRR and HRRR26 h (two identically configured runs

initialized 6 h apart), have an r2 value comparable to pairs of

HRRRE members. Otherwise, HREFv2.1 correlations are

relatively low, with some clustering evident by model core

(WRF-ARW versus NMMB) and ICs (NAM versus RAP).

When member probability forecasts are compared over only

the SFE daily domains (Figs. 5d–f), r2 values decreasemodestly

FIG. 3. For CREF. 40 dBZ smoothed probability fields (for members) and NMEPs (for ensembles), mean FSS

over the 378 hourly snapshots for (a) CONUS and (b) SFE daily domains. For the three ensembles at bottom, the

bolded, color-coded bar shows the mean FSS of its individual member forecasts (each of which appears as its own

bar above), while the red bar extends to the FSS for the ensemble mean forecast. The length of the red extension

thus represents FSSgained, which is also annotated as red text to the right. CIs at the 90% level for FSS values are

shown as black error bars, and separately for FSSgained values as cyan error bars (bottom three bars only; these CIs

are quite small and in some cases appear as a single cyan line).
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for all pairs compared to the CONUS domain. Over the daily

domains, the mean correlation magnitude for MAP pairs

(r2 5 0:46) is fully twice as large as for HREFv2.1 pairs

(r2 5 0:23), suggesting that meaningful spread in HREFv2.1 is

substantially larger than in MAP (which includes no sampling

of model uncertainty).

Another perspective on the spread contributed by each en-

semble member can be gained by identifying grid points at

which the member’s smoothed probability field differs from its

parent ensemble’s NMEP by a value exceeding some thresh-

old.Wewill call such points ‘‘outlier points:’’ here, themember

is either 1) predicting storms in an area where most other

members do not, or 2) failing to predict storms in an area where

most other members do. Gridpoint frequencies for outlier

points in each ensemble member are given in Figs. 6a–c for the

CONUS, and in Figs. 6d–f for the SFE daily domains. For the

most stringent threshold of 0.7 (Figs. 6c,f), over both domains,

the typical HREF member has about three times as many

outlier grid points in the verification dataset as does the

typical HRRRE or MAP member. This discrepancy is some-

what less pronounced for thresholds of 0.6 (Figs. 6b,e) and 0.5

(Figs. 6a,d). Nonetheless, it is clear that a typical HREF

member departs sharply from its parent ensemble on fore-

casting storm occurrence or nonoccurrence more frequently

than a typical HRRRE or MAP member. In terms of the

ensemble PDF, this means long tails are more often present in

HREFv2.1.

Figure 7 presents an attributes diagram for NMEPs from the

three ensembles over the CONUS. HREFv2.1 exhibits re-

markably good reliability, while HRRRE and MAP are both

somewhat overconfident (i.e., low NMEPs are underforecasts

and high NMEPs are overforecasts). BSREL (for which zero

represents perfect reliability) is 5 times larger forHRRRE, and

7 times larger for MAP, than for HREFv2.1. For the SFE daily

domains (Fig. 8), qualitatively similar results hold. However,

there is some notable degradation of reliability for NMEP .
0.6 in HREFv2.1, where it becomes similarly overconfident to

HRRRE and MAP. Nonetheless, differences in BSREL favor

HREFv2.1 by about an order of magnitude over the HRRRE

and MAP. Also noteworthy in the bin histograms is the un-

derrepresentation of HREFv2.1 in both the smallest and

largest probability bins (P# 0.05 and P. 0.95, respectively), a

reflection of its more frequent forecasts falling into interme-

diate bins associated with meaningful member disagreement.

Figure 9a presents CR as a function of lead time over the

full verification period and full CONUS. The CR tends to in-

crease during the diurnal convective maximum (lead times of

18–26 h, corresponding to 1800–0200UTC daily), but generally

does not vary in time by more than about 30% for a given

ensemble. HREFv2.1 (CR5 1:01) demonstrates remarkably

FIG. 4. As in Fig. 3, but for ROC AUC, and CIs are omitted.
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good statistical consistency, while HRRRE (CR5 0:46) and

MAP (CR5 0:37) are quite underdispersive. For the SFE daily

domains (Fig. 9b), the results are very similar. While these CR

values reveal much about the total ensemble spread aggre-

gated over all cases, they do not address whether MEV for a

single hourly snapshot is a good predictor ofMSE for that same

snapshot, as is true of an ideal ensemble. To evaluate this, we

also compute r2 between MSE and MEV for the set of all

378 snapshots. Figure 10 presents scatterplots of MEV versus

MSE for all three systems and both verification domains. For

an ideal ensemble in which MEV 5 MSE, all points would lie

along the red line. However, even for highly underdispersive

FIG. 5. Matrices of the coefficient of determination (r2) between ensemble member CREF. 40 dBZ probability

fields for (a) HREFv2.1, (b) HRRRE, and (c) MAP over the CONUS domain and across all 378 snapshots. (d)–(f)

As in (a)–(c), but over the SFE daily domains. In each panel, the mean r2 of all unique pairs of members is given

above the matrix.
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ensembles, a strong correlation between MEV and MSE (i.e.,

points lying along a line of lesser slope passing through the

origin) is still desirable. Over the CONUS, r2 is quite high for

all three systems; however, r2 drops into the 0.5–0.65 range for

the SFE daily domains. This is a reflection of the relative

abundance of easy correct nulls over the CONUS domain, as

storms can be expected not to exist in most areas most of the

time. To focus more narrowly on grid points with meaningful

forecast challenges, Fig. 11 presents the same statistics when all

correct nulls (i.e., grid points where all ensemble members

have a zero probability and no storm is observed nearby in

reality) are removed.As expected, r2 is reduced substantially in

this dataset; however, the reduction is much less severe for

HREFv2.1 than for HRRRE or MAP. In fact, r2 is 40%–70%

larger for HREFv2.1 than for the other two systems over both

domains. This implies that ensemble disagreement regarding

the presence of storms within HREFv2.1’s membership pre-

dicts MSE better than it does in HRRRE’s or MAP’s.

4. Verification of surrogate severe forecasts
As described in section 2, surrogate severe forecasts are

computed on an 80-km grid, making verification computation-

ally cheaper than CREF NMEPs. This affords us the opportu-

nity to verify surrogate severe forecasts over a range of UH

percentile thresholds and Gaussian s values, giving insight into

the dependence ofCAMensembleUH forecast skill on intensity

and smoothing length scale. Figure 12 presents ensemble sur-

rogate severe AUC (left) and FSS (right) as a function of these

parameters for HREFv2.1, HRRRE, and MAP. In each panel,

the ensemble’s maximum score within the percentile-s param-

eter space is represented by a white square and annotated with

the AUC or FSS value. White circles, which are shaded by score

using the main color scale, represent the maximum scores

achieved by each ensemble member’s surrogate severe forecast

(e.g., on the HRRRE FSS panel, the maximum score achieved

by member HRRRE01’s forecasts will be plotted as a circle at

the s-percentile coordinate where that score occurs).

FIG. 6. Over the CONUS domain, the fractional gridpoint frequency of each ensemble member’s CREF . 40 dBZ probability field

differing in magnitude from its parent ensemble’s NMEP by at least (a) 0.5, (b) 0.6, and (c) 0.7. (d),(e),(f) Gridpoint frequencies for the

same respective thresholds are shown for the SFE daily domains. Note that the range of the abscissa changes between panels.
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For AUC, maximum scores for each ensemble are attained

at relatively low intensities in the 75th–85th percentile range.

The performance ranking of the three ensembles by maximum

AUC score, with HREFv2.1 first and HRRRE last, matches

ourCREFverification results for ensembleNMEPs. Interestingly,

the s value associated with the maximum AUC also varies

considerably between ensembles: MAPAUC values are highest

with relatively strong smoothing (s ; 110 km), whereas

HREFv2.1 achieves its highest AUC value with less smoothing

(s ; 75 km). For FSS, the ranking of the three ensembles re-

mains the same as for AUC, though the performance gap be-

tween HREFv2.1 and MAP is larger than for AUC. Higher

intensities in the 85th–90th percentile range, and weaker

smoothing, are required to maximize FSS than AUC. The

former is likely true because AUC tends to reward the over-

forecasts resulting from choosing a low UH threshold (e.g.,

Gallo et al. 2016), whereas FSS has a more balanced response

to the trade-off between POD and FAR. As with AUC,

HREFv2.1 maximizes FSS at a smaller s than does HRRRE

or MAP.

For both AUC and FSS, the individual member surrogate

severe forecasts (white circles) consistently require stronger

smoothing to optimize skill than the ensemble surrogate severe

forecasts (solid white squares). This result, combined with the

notable difference in score-maximizing s values between three

ensembles’ surrogate severe forecasts, motivates us to revisit

FIG. 7. Attributes diagram for CREF NMEPs over the CONUS. Binned probabilities are

used; each bin is plotted as a white dot on the diagram, with a colored curve connecting all the

dots for each ensemble. The 90% CIs for the base rate in each bin are plotted as error bars,

also colored by ensemble. Below the attributes diagram, bars give the frequency of occur-

rence of probabilities within each bin (as a percentage of all grid points in the dataset). The

reliability component of the Brier score (BSREL) for each ensemble is given in the legend,

with its 90% CI in parentheses.
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the history of and best practices for spatially filtering CAM

NMEPs. When computing practically perfect truth fields,

Hitchens et al. (2013) chose a two-dimensional Gaussian ker-

nel that effectively used s 5 120 km, in part because this de-

gree of smoothing ‘‘better represent[ed] the outlooks issued by

the SPC’’ than other values they tested. Separately, studies

verifying surrogate severe forecasts from deterministic CAMs

(S11) and CAM ensembles (Sobash et al. 2016b,a; Loken et al.

2017; Sobash et al. 2019) have typically found skill (e.g., FSS

and reliability) maximized at s$ 120 km; due to these findings,

in some cases, s5 120 km is simply chosen as the default value

(e.g., Sobash and Kain 2017). Some trade-offs entailed in

varying s are explored in S11: larger values tend to improve

reliability (to a point), but reduce sharpness and virtually

eliminate coverage of high probabilities. As cautioned by

Schwartz and Sobash (2017), defining the neighborhood and

smoothing length scales separately can complicate inter-

pretation and poses a risk of conflating scales. For example,

when FSS is computed across smoothing length scales using

smoothed continuous (instead of binary) truth fields (as in S11

and others), smoothing applied to the practically perfect fields

typically varies tomatch what is applied to the surrogate severe

forecasts.When such FSSs are found to bemaximized at a large

s value, it does not necessarily imply that strong smoothing

produces the most skillful forecasts at the true neighborhood

length scale (which is almost always defined by a radius of

40 km, in line with the SPC’s convective outlook definition).

Because our FSSs herein use a binary truth field, this caveat

does not apply, and our FSSs should directly reflect forecast

skill in answering the question: ‘‘What is the probability of a

severe weather event within 40 km of this point?’’ When we

assign our smoothing length scale s to exceed the neighbor-

hood size, then, it is simply a postprocessing technique that can

potentially improve skill in predicting neighborhood-scale

probabilities by accounting for uncertainty in storm placement.

Given similar skill of the resulting fields, using smaller s should

be preferred operationally in order to retain smaller-scale

spatial detail in the forecast. Thus, HREFv2.1 demonstrates

FIG. 8. As in Fig. 7, but for the SFE daily domains.
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added value over HRRRE and MAP not only in terms of

maximum skill scores, but also by achieving those scores with

smallers (Fig. 12). Note that the individualmembers of all three

ensembles tend to maximize AUC and FSS in approximately

the same s range, implying that HREFv2.1 performs best at

smaller s primarily because of complementary information

from its diverse members; not because its member surrogate

severe forecasts individually need less smoothing.

Figure 13 presents AUCgained and FSSgained for the three

ensembles (i.e., the score of the ensemble surrogate severe

forecasts minus the mean score of the member surrogate se-

vere forecasts). FSSgained, in particular, highlights HREFv2.1’s

FIG. 9. The consistency ratio of ensemble CREF. 40 dBZ NMEPs from each system as a

function of forecast lead time over the (a) CONUS and (b) SFE daily domains. The mean

consistency ratio over all lead times is given in the legend on each panel. The dashed line

denotes the ideal consistency ratio of unity.
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FIG. 10. Scatterplots of mean ensemble variance (MEV) vs mean squared error (MSE) of CREF . 40 dBZ

NMEPs for the three ensemble systems over the CONUS and SFE daily domains. Each point on the scatterplot

represents the MEV and MSE for one of the 378 snapshots. In each panel, the coefficient of determination r2 is

given in the label at top left. The red diagonal line denotes perfect correspondence between the MEV and MSE; a

snapshot with perfect statistical consistency will lie along this line.
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FIG. 11. As in Fig. 10, but grid points with values of zero in both the forecast and observed fields (correct nulls) are

excluded from the calculation. For any single snapshot, the total squared error and total variance summed over the

domain remains as in Fig. 10 (since the excluded correct null points are zero in all fields), but the MEV and MSE

may change due to fewer grid points being considered in the average.
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augmented advantage over its members at s# 80 km. It is clear

from Fig. 13 that when aggressive smoothing (s $ 120 km) is

used to produce ensemble surrogate severe forecasts, the re-

sulting field is only marginally more skillful than applying the

same smoother to a typical ensemble member’s binary field,

especially in the case of HRRRE andMAP. A corollary is that

the added computational expense of running a full CAM en-

semble for the purpose of producing skillful surrogate severe

forecasts generally yields diminishing returns as the choice of

s increases, since an optimized deterministic CAM could

provide a comparable product.

To assess the smoothing scale dependence of surrogate se-

vere forecast reliability, Fig. 14 presents attributes diagrams for

surrogate severe forecasts produced using three different

s values. At each s and for each ensemble, the UH percentile

that minimizes BSREL is selected to plot. At s 5 60 km

(Fig. 14a), HREFv2.1 demonstrates better reliability than

HRRRE and particularly MAP, with the latter two showing

more overconfidence. Increasing s to 120 km reduces the

disparity between HREFv2.1 and HRRRE, although MAP

remains notably more overconfident (Fig. 14b). Finally, at s5
180 km (Fig. 14c), meaningful differences in reliability between

the three ensembles have been greatly minimized (indeed,

HREFv2.1 has the worst reliability, although none of the en-

sembles display obvious overconfidence). Given these results,

larger smay tend to mask underlying skill differences between

ensembles at the true neighborhood length scale.

Based on these analyses, we suggest verification and post-

processing of CAM ensemble rare-event NMEPs (including,

but not limited to, surrogate severe forecasts) that employ a

Gaussian smoother should, when possible, be tested across a

range of s values that extend well below the traditional sur-

rogate severe forecast default of s5 120 km. For example, our

surrogate severe forecast results suggest near-maximum skill

can now be extracted from a diverse CAM ensemble such as

HREFv2.1 using a smaller smoothing length scale (s; 60 km).

Furthermore, during verification, ensemble NMEP skill at a

given s value should ideally be contextualized through com-

parison with individual member probabilities produced using

the same Gaussian parameter, as in Fig. 13. This assesses

FIG. 12. For the ensemble mean surrogate severe forecasts, the aggregate (left) AUC and (right) FSS for all

21 days in the verification dataset over the eastern 2/3 CONUS domain. Scores are displayed as a function of the

Gaussian smoothing s (abscissa) and the member UH climatology percentile (ordinate). On each panel, the s and

percentile where the maximum score is achieved for the ensemblemean surrogate severe forecasts is indicated by a

solid white square and annotated. Additionally, the s and percentile where each ensemble member’s surrogate

severe forecast achieves itsmaximum score is denoted as a white circle, with color fill inside the circle corresponding

to the member’s score.
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whether smoothing a single member’s binary field in the same

way as the ensemble mean could provide nearly equivalent

skill, in which case the ensemble is not adding substan-

tial value.

5. Summary and conclusions
In this study, we compared the ability of three CAM en-

semble systems to produce skillful probabilistic forecasts of

convective storms and severe weather hazards within the

context of the next-day forecast problem. The first ensemble,

HREFv2.1, is an ensemble of opportunity (EO) comprising

highly diverse deterministic CAMs processed together as an

ad hoc ensemble. The other two ensembles, HRRRE and

MAP, are formally designed ensemble prediction systems

(EPSs) with unified model configurations across their mem-

bers. Owing to their membership designs, HREFv2.1 samples

both model and IC uncertainty, whereas HRRRE and MAP

only sample IC uncertainty.

Verification of bias-corrected composite reflectivity (CREF)

exceeding 40 dBZ within an 80 km3 80 km neighborhood was

performed on hourly snapshots over the 21-day dataset in the

spring of 2018 for lead times of 13–30 h. Intended to evaluate

ensemble skill in the overall placement and coverage of con-

vective storms, this analysis revealed that HREFv2.1 produced

the most skillful forecasts, followed by MAP, and then

HRRRE. When forecasts from individual ensemble members

were verified, member skill between HREFv2.1 and MAP was

generally quite similar, with MAP members actually out-

performing HREFv2.1 members in some metrics. However,

HREFv2.1 NMEPs showed a substantially larger improvement

over its constituent member forecasts than did MAP NMEPs.

This suggests HREFv2.1 members are more effectively filling

out a realistic PDF, whereas MAP members are more dupli-

cative of one another (a weakness shared, to a somewhat lesser

extent, by HRRRE). This finding motivated further quantita-

tive evaluation of ensemble spread in the three systems.

Correlations between member NMEPs, along with the grid-

point frequency of member ‘‘outlier points,’’ were computed,

and both indicated substantially more ensemble spread exists

in HREFv2.1 than HRRRE and MAP. Attributes diagrams

also showed much better reliability for HREFv2.1, whereas

HRRREandMAPexhibited overconfident probabilities. Spread–

skill metrics computed for NMEPs indicated very good sta-

tistical consistency for HREFv2.1; by contrast, HRRRE and

FIG. 13. As in Fig. 12, but the plotted quantity is the difference between the score of the ensemblemean surrogate

severe forecasts and the mean score of the member surrogate severe forecasts (i.e., AUCgained and FSSgained), and

dots for ensemble andmember score maxima are omitted. Note that the range of the abscissa differs from Fig. 12 to

highlight the portion of the parameter space with nonnegligible AUCgained and FSSgained.
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MAP had approximately half of the spread needed for good

consistency. This inferior consistency was overwhelmingly due

to smaller spread in HRRRE and MAP, with their slightly

larger NMEP errors playing only a minor role.

To complement CREF verification, we also verified daily

surrogate severe forecasts with the goal of assessing ensem-

ble skill in predicting intense storms associated with severe

convective hazards (tornadoes, hail, and wind gusts). By ag-

gregating the surrogate severe forecasts over a 24-h period, this

verificationwas largely insensitive to timing errors.Additionally,

surrogate severe forecasts were produced and verified on a

relatively coarse 80-km grid, decreasing the computational cost

and allowing us to test a wide range of UH thresholds and

Gaussian s values. At their respective performance maxima

FIG. 14. Attributes diagram for surrogate severe forecasts produced with a Gaussian filter using (a) s 5 60 km,

(b)s5 120 km, and (c)s5 180 km.At eachs value and for each ensemble, theUHpercentile, whichminimizes the

reliability component of the Brier score (BSREL) is used to produce the surrogate severe forecasts; this percentile

and the resulting BSREL are reported in the legend for each panel.
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within the UH–s parameter space, ensemble skill differences

between the three systems largely mirrored our CREF results:

HREFv2.1 performedbest, followedbyMAP, and thenHRRRE.

Additionally,HREFv2.1maximizedAUCandFSSwith a smaller

s thanHRRREorMAP, implying that its advantage over the two

other systems is especially pronounced when less smoothing is

applied to produce the surrogate severe forecasts.We computed

skill differences between the ensemble mean and member

surrogate severe forecasts throughout the parameter space

and found the ensembles (particularly HREFv2.1) offered their

greatest added value at small s, whereas strong smoothing (e.g.,

s . 120km) washed out much of the meaningful skill difference

between ensemble and deterministic surrogate severe forecasts.

These results have potential implications for postprocessing

and verifying neighborhood-based CAM ensemble products.

First, diverse ensembles such as HREFv2.1 with relatively

good spread characteristics may be capable of forecasting

convective storms with near-optimal skill at smaller spatial

scales than is assumed a priori when a Gaussian smoother is

applied using the traditional s 5 120 km. To the extent this is

true, applying weaker smoothing to real-time NMEPs benefits

operational users by retaining more spatial detail from the

skillful model solutions. Additionally, when verifying CAM

ensemble NMEPs (including surrogate severe forecasts) over a

range of s values, the value that maximizes a skill score does

not necessarily highlight where the ensemble is adding the

most value over deterministic CAMs. As more aggressive

smoothing is applied to gridpoint NMEPs, they increasingly

verify similarly to the equivalently smoothed versions of their

underlyingmember binary fields. This is another reason that an

ensemble that achieves maximal skill using less smoothing

(HREFv2.1, in the present study) is preferable to one that at-

tains comparable skill only after applying more smoothing

(particularly true of MAP in the present study).

Given that HRRRE and MAP do not include sampling of

model uncertainty in any fashion, the superior spread and skill

of HREFv2.1 suggests the critical need to sample model errors

optimally in CAM ensemble design. Our results corroborate

the advantage of samplingmodel uncertainty previously shown

in the context of controlled CAM ensemble experiments

(Romine et al. 2014; Gasperoni et al. 2020); in the present

study, this was shown for ensembles implemented successfully

for real-time applications, and also for verification focused on

convective storms. Note that although HREFv2.1 is the only en-

semble herein to sample model uncertainty meaningfully, it also

typically contains more diverse ICs than HRRRE or MAP,

so further work is needed to isolate and quantify the specific

contribution of HREFv2.1’s model uncertainty sampling.8

Nonetheless, the superior spread of HREFv2.1 reported in

this study illustrates the compelling benefits of processing

CAM EOs with multidimensional member configuration

diversity. As we focused our verification on lead times of 12–

36 h, often described in convective forecasting as the ‘‘next-

day problem,’’ we cannot yet address whether accounting

for complex model uncertainty is similarly crucial at shorter

lead times. Also, vigorous development of CAM ensembles

has only accelerated in earnest over the most recent decade,

and operational implementations remain very limited. As

additional research is performed to bring stochastic physics

schemes to maturity, model uncertainty is likely to become

more adequately represented in future unified CAM ensem-

bles, potentially adding spread and improving their skill in

forecasting convective storms. Nonetheless, our results high-

light the impressive potential of dynamical core, physics, IC

analysis, and time-lagging diversity working in tandem to rep-

resent the highly nonlinear forecast uncertainties that modulate

convective initiation and evolution, suggesting they should be

given due consideration in future CAM ensemble design and

implementation decisions.
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APPENDIX

CREF Bias Correction
Because we evaluate neighborhood probability forecasts for

CREF $ 40 dBZ in this study, we are concerned with the

frequency bias for each ensemble member in exceeding that

threshold. As mentioned in section 2, we choose an approach

conceptually similar to ‘‘quantile mapping’’ (Hopson and

Webster 2010; Voisin et al. 2010). The dataset used for bias

correction is the same as the verification dataset. Our proce-

dure for computing bias-corrected CREF $ 40 dBZ proba-

bilities is as follows:

1) Compute the gridpoint frequency of CREF$T forT5 [35,

36, 37, . . . , 50] dBZ for each ensemble member over the

CONUS for all 378 hourly snapshots.

2) Compute the gridpoint frequency of CREF $ 40 dBZ for

the MRMS MRQCC over the CONUS for all 378 hourly

snapshots.

3) For each ensemble member, compute the bias BT,O for T5
[35, 36, . . . , 50] dBZ and O 5 40 dBZ, where T is the

forecast threshold and O is the observed threshold.

4) For each ensemble member, choose an unbiased threshold

Tunbiased by linearly interpolating between the computed

BT,O values (available at 1-dBZ increments) to estimate the

T value at which BT,40 5 1.

As an example, if B43,40 5 1.05 and B44,40 5 0.95 are com-

puted for a member, we estimate Tunbiased 5 43.5 dBZ. Bias-

corrected NMEPs for ensembles are then computed with

respect to a member-dependent exceedance threshold of

Tunbiased, rather than a fixed 40-dBZ threshold. Note that our

procedure guarantees forecast exceedance probabilities will be

approximately unbiased with respect to MRQCC for any en-

semble at the grid scale, but does not strictly guarantee neigh-

borhood probability fields will be unbiased: it is possible for N

grid points exceeding Tunbiased in a forecast to be systematically

more or less spatially clustered than N grid points exceeding

40 dBZ in the MRMS verification dataset, which in turn would

yield biased coverage of NMEP . 0 when the neighborhood

size is much larger than one grid point.

After computing the biases for each member of all three

ensembles, members are assigned into groups sharing identical

model configurations: MAP (N 5 10), HRRRE (N 5 9),

HRRR (N5 2), HRWARW (N5 2), HRWNMMB (N5 2),

HRW NSSL (N 5 2), and NAM Nest (N 5 2). For each of

these groups, the mean Tunbiased of its members is used to

compute NMEPs. These values are displayed in Table A1. Our

theoretical goal in performing this correction is to ignore dis-

crepancies in how storms are depicted in different configura-

tions’ CREF fields; in particular, discrepancies owing strictly to

idiosyncrasies of the microphysics scheme, numerical diffu-

sion, etc. Put another way, if a particular stormwith a particular

structure and intensity is ‘‘correctly’’ predicted in all of the

model configurations, we hope to treat the simulated mani-

festation of that storm the same in each configuration during

verification. In practice, however, it is possible that the con-

figurations exhibit different biases in the actual coverage of

convective storms, which could lead us to assign more ag-

gressive configurations a Tunbiased corresponding to more in-

tense storms than less aggressive configurations.

In the course of performing the bias correction, gridpoint

frequency biases were computed for numerous CREF thresh-

olds for each model configuration over the CONUS. These

biases are presented in Fig. A1. Regarding the aforementioned

possibility of discrepancies in real storm coverage unduly

influencing our thresholds: it is encouraging that configurations

sharing a common microphysics parameterization scheme

generally exhibit similar bias curves (e.g., the MAP, HRRRE,

and HRRR, all using Thompson microphysics; or the HRW

ARW and HRW NSSL, both using WSM6 microphysics). At

the 40-dBZ exceedance threshold, frequency biases range from

1.5 to 3.9 across the configurations.

FIG. A1. CREF gridpoint exceedance frequency biases for each

model configuration in the verification dataset. Bias is computed

over the entire 21-day dataset (378 hourly snapshots), and over the

CONUS domain, at 1-dBZ intervals for 35 # CREF# 50 dBZ, as

well as at 25 and 30 dBZ.

TABLE A1. Unbiased CREF thresholds Tunbiased (dBZ) corre-

sponding to theMRMSMRQCC40-dBZ threshold for eachmodel

configuration. Thresholds were computed for the CONUS domain

based on 378 hourly snapshots of CREF.

Configuration Tunbiased (dBZ) for 40 dBZ

HRRRv3 44.8

HRW ARW 43.0

HRW NSSL 43.4

HRW NMMB 47.7

NAM Nest 42.4

HRRRE 44.2

MAP 44.5
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